

Search for New Particles Decaying to Dijets

Robert M. Harris
Exotics & QCD Meetings
Dec. 12 & 13, 2002

Motivation & Strategy

- To search for new particles decaying to dijets, which appear as bumps in dijet mass distribution.
 - Set limits on cross section & mass of new particles if no discovery.
 - Example models are axigluons, colorons, q*, ρ_T, W', Z', E₆ Diquarks.
- Complete a physics result in time for Winter Conferences.
 - Show that CDF is making progress understanding jets in run 2.
 - Demonstrate run 2 is already more sensitive to new physics than run 1.
- Repeat run 1 analysis as closely as possible.
 - We've done this before and can benefit from our run 1 experience
 - References: PRD 55, R5263 (1997); PRL 74, 3538 (1995)
 - Allows comparison of run 2 with run 1 data as a check.
 - We calibrate the run 2 jet energy to the run 1 jet energy for expedience.
 - Now the official procedure of the Jet Corrections Group and Jet Subgroup.

Dijet Mass Analysis

- As in run1, use J20, J50, J70 & J100 triggers.
 - → 52 pb⁻¹ of Frank Chlebana's ntuples from Dec 2001 Sep 2002.
- As in run 1, we apply the following cuts.
 - → | Z Vertex | < 60 cm to insure cal towers project from vertex. Efficiency ≈ 94%.</p>
 - → Missing E_T /sqrt(ΣE_T) < 6.0 to eliminate cosmic rays.
 - → ΣE < 2.2 TeV (2.0 TeV in run 1) to eliminate unphysical noise.</p>
- Get the two leading jets (highest E_T), with cone R=0.7, and correct the energy.
 - Relative correction vs. detector η comes from dijet balancing in J20 (Bhatti & Flanagan).
 Need to replace this with dijet balancing from J20, J50, J70 and J100.
 - → Absolute corrections for central response, out-of-cone energy & und event from run 1.
 - → Cal E-scale corrections: increase CEM scale by 0.9%, CHA scale by 4%.
 - → Jet E-scale using photon-jet balancing results in run 2 and run 1 from G. Latino.
 - Increase jet energy by 4.41% +/- 0.50%. Completes "calibration" of run 2 jet energy to run 1.
 - CDF6152 & http:/cdfsga.fnal.gov/internal/people/links/GiuseppeLatino/links/talk_11_13_02.ps.gz
 - → This procedure has been made "official" for winter conferences and code is available.
- As in run 1, require each leading jet have $|\eta| < 2$, $|\cos \theta^*| = |\tanh([\eta_1 \eta_2]/2)| < 2/3$.
 - Reduces QCD background (t-channel) when searching for new particles (s-channel).
- As in run 1, define dijet mass $M = \operatorname{sqrt}(E^2 \overline{p^2})$, where $E = E_1 + E_2$, $\overline{p} = \overline{p_1} + \overline{p_2}$.

Selection Cuts in J100 Sample

- z vertex cut is 94% efficient.
 - Vertex strategy 1 algorithm fails on 2% of events and z=0.0 is assigned.
- Missing Et significance cut is crucial for elimination of cosmics rays
 - Efficiency >> 99%
- Total energy cut for obvious junk.

Dijet Mass Trigger Efficiency

Trigger	Mass Cut (GeV)	Efficiency at Threshold			Luminosity/Prescale (pb ⁻¹)		
		Run 1A	Run 1B	Run 2	Run 1A	Run 1B	Run 2
Jet 20	180	1	1	1	19.1/500	87.3/1000	51.7/240
Jet 50	241	0.99	0.98	0.989	13.1/20	87.3/40	51.7/20
Jet 70	292	0.95	0.96	0.997	19.1/6	87.3 <mark>/8</mark>	51.7/8
Jet 100	388	0.97	0.96	0.994	19.1/ 1	87.3/1	51.7/1

- Using same thresholds and mass bins as run 1, calculate cross section.
 - Apply the run 2 luminosity, prescales, trigger efficiency and z vertex efficiency.

Dijet Mass Distribution

Dijet Mass from Run 2

Robert M. Harris, Fermilab CD/CDF

High Mass Dijet Event

Run 151128 event 295868

Dijet Mass = 1197 GeV (corr)

 $\cos \theta^* = 0.36$

z vertex = 54 cm

mass are preliminary

Angular Variables & Relative Corrections J100 with M>388 GeV

Robert M. Harris, Fermilab CD/CDF

Miscellaneous Variables J100 with M>388 GeV

hjemf

Dijet Mass from Run 2 & Run 1

Robert M. Harris, Fermilab CD/CDF

Dijet Mass Ratio: Run 2 / Run 1

- Run 2 / Run 1 agrees with theory to ~6% in rate (~1% in energy scale).
 - Calibration of run 2 jet energy to run 1 works. The 4.4% energy increase was necessary.

 Robert M. Harris, Fermilab CD/CDF

 11

Dijet Mass Search

Search for resonances

As in Run 1, we fit the dijet mass distribution with a background parameterization inspired by QCD.

$$\frac{ds}{dm} = \frac{p_0 (1 - m/\sqrt{s} - p_1 m^2/s)^{p_2}}{m^{p_3}}$$

- \rightarrow Numerator models the $(1-x)^n$ behavior of parton distributions.
- Denominator models the 1/m^p behavior of QCD matrix element.
- → The fit is good, almost too good!
- No obvious evidence of new particles.

Dijet Mass and Parametric Fit

Robert M. Harris, Fermilab CD/CDF

Dijet Mass Residuals: (Data – Fit) / Fit

Robert M. Harris, Fermilab CD/CDF

New Particle Limits

- Set upper limits on cross section for new particles.
 - Fit data to background parameterization plus a narrow resonance.
 - Use run 1 simulation of narrow resonances for now.
 - Dijet mass resolution (rms ~ 10%) dominates line shape.
 - There is a long tail to lower masses caused by QCD radiation.
 - Calculate likelihood vs. resonances cross section.
 - Statistical binned likelihood distributions and 95% CL limit points.
 - Recalculate limit for each systematic uncertainty shift.
 - Add resulting systematic shifts in quadrature to get total Gaussian sys.
 - Convolute statistical likelihoods with Gaussian systematic uncertainty.
 - Find 95% CL upper bound on new particle cross section.
 - Both with and w/o systematics.
 - Compare cross section upper limits to new particle theory.
 - As in run 1, we use lowest order predictions, but at \sqrt{s} = 1.96 TeV.
 - We have predictions for Axigluons, colorons, q*, and E₆ diquarks.
 - Read off mass limits from the comparison.

Systematics in Limit on Cross Section

Systematics

- Background Param.
 - Change from 4 to 3 parameter fit.
 - Allows for more signal because it fits the data worse.
- Absolute E-Scale
 - → 5% systematic.
- Radiation
 - Cut out half of tail to low mass.
- Energy Resolution
 - → 10% systematic
- Luminosity.
 - → 10% at this stage.

Likelihood Distributions

- Likelihood w/o systematics (dotted) and with systematics (solid) calclulated every 50 GeV for narrow resonances from 200 to 1150 GeV.
- Poisson like statistical likelihoods get smeared out by large Gaussian systematic.
- Integrate likelihood up to 95% area point to find 95% CL upper limit.

Limits on New Particles

- Very preliminary excluded masses of new particles at 95% CL in run 2
 - Axigluon or Coloron
 - M < 1.1 TeV</p>
 - → Run 1: M<980 GeV
 - Excited Quarks
 - M < 710 GeV</p>
 - → Run 1: M< 760 GeV.
 - → E6 Diquark
 - → 350<M<420 GeV.
 - → Run 1: 290<M<420.

Conclusions

- We have a very preliminary dijet mass distribution in run 2.
 - → The analysis was as close as possible to that in run 1.
 - The ratio of run 2 to run 1 cross section is as expected from QCD.
 - The energy scale corrections of the jet group look pretty good.
- We've done a very preliminary search for new particles decaying to dijets.
 - Mass distribution is smooth & well fit by background parameterization.
 - 95% CL upper limits determined on cross section and mass for new particles.
 - → Axigluons or flavor universal colorons excluded for M<1.1 TeV at 95% CL.</p>
 - Excited Quarks excluded for M<710 GeV at 95% CL.
 - E₆ Diquarks excluded for 350<M<420 GeV at 95% CL.
- First exclusion of a particle with mass > 1 TeV at the Tevatron!
 - Nun 2 with 52 pb⁻¹ is more sensitive to the highest mass physics than run 1.
- Next Steps
 - Rerun on larger sample, with recent processing, corrections, filters, . . .
 - If I cannot complete this in time for LaThuille, I believe this sample is blessable.
 - Add more systematic uncertainties as necessary.